6 research outputs found

    A Requirement-centric Approach to Web Service Modeling, Discovery, and Selection

    Get PDF
    Service-Oriented Computing (SOC) has gained considerable popularity for implementing Service-Based Applications (SBAs) in a flexible\ud and effective manner. The basic idea of SOC is to understand users'\ud requirements for SBAs first, and then discover and select relevant\ud services (i.e., that fit closely functional requirements) and offer\ud a high Quality of Service (QoS). Understanding users’ requirements\ud is already achieved by existing requirement engineering approaches\ud (e.g., TROPOS, KAOS, and MAP) which model SBAs in a requirement-driven\ud manner. However, discovering and selecting relevant and high QoS\ud services are still challenging tasks that require time and effort\ud due to the increasing number of available Web services. In this paper,\ud we propose a requirement-centric approach which allows: (i) modeling\ud users’ requirements for SBAs with the MAP formalism and specifying\ud required services using an Intentional Service Model (ISM); (ii)\ud discovering services by querying the Web service search engine Service-Finder\ud and using keywords extracted from the specifications provided by\ud the ISM; and(iii) selecting automatically relevant and high QoS services\ud by applying Formal Concept Analysis (FCA). We validate our approach\ud by performing experiments on an e-books application. The experimental\ud results show that our approach allows the selection of relevant and\ud high QoS services with a high accuracy (the average precision is\ud 89.41%) and efficiency (the average recall is 95.43%)

    The Invariant Refinement Method

    No full text
    Abstract. The chapter describes IRM, a method that guides the de-sign of smart-cyber physical systems that are built according to the au-tonomic service-component paradigm. IRM is a requirements-oriented design method that focuses on distributed collaboration. It relies on the invariant concept to model both high-level system goals and low-level software obligations. In IRM, high-level invariants are iteratively decom-posed into more specific sub-invariants up to the level that they can be operationalized by autonomous components and component collabora-tions (ensembles). We present the main concepts behind the method, as well the main decomposition patterns that back up the design process, and illustrate them in the ASCENS e-mobility case study
    corecore